Molecular Coupling between Voltage Sensor and Pore Opening in the Arabidopsis Inward Rectifier K+ Channel KAT1
نویسندگان
چکیده
Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we detected KAT1-gating currents due to the existence of an intrinsic voltage sensor in this channel. The measured gating currents evoked in response to hyperpolarizing voltage steps consist of a very fast (tau = 318 +/- 34 micros at -180 mV) and a slower component (4.5 +/- 0.5 ms at -180 mV) representing charge moved when most channels are closed. The observed gating currents precede in time the ionic currents and they are measurable at voltages (less than or equal to -60) at which the channel open probability is negligible ( approximately 10-4). These two observations, together with the fact that there is a delay in the onset of the ionic currents, indicate that gating charge transits between several closed states before the KAT1 channel opens. To gain insight into the molecular mechanisms that give rise to the gating currents and lead to channel opening, we probed external accessibility of S4 domain residues to methanethiosulfonate-ethyltrimethylammonium (MTSET) in both closed and open cysteine-substituted KAT1 channels. The results demonstrate that the putative voltage-sensing charges of S4 move inward when the KAT1 channels open.
منابع مشابه
Voltage-dependent Gating of Single Wild-Type and S4 Mutant KAT1 Inward Rectifier Potassium Channels
The voltage-dependent gating mechanism of KAT1 inward rectifier potassium channels was studied using single channel current recordings from Xenopus oocytes injected with KAT1 mRNA. The inward rectification properties of KAT1 result from an intrinsic gating mechanism in the KAT1 channel protein, not from pore block by an extrinsic cation species. KAT1 channels activate with hyperpolarizing poten...
متن کاملExpression of a Cs(+)-resistant guard cell K+ channel confers Cs(+)-resistant, light-induced stomatal opening in transgenic arabidopsis.
Inward-rectifying K+ (K+in) channels in the guard cell plasma membrane have been suggested to function as a major pathway for K+ influx into guard cells during stomatal opening. When K+in channels were blocked with external Cs+ in wild-type Arabidopsis guard cells, light-induced stomatal opening was reduced. Transgenic Arabidopsis plants were generated that expressed a mutant of the guard cell ...
متن کاملThe pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids.
The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2-2.5 pH units) is perceived by voltage-gated inward potassium channels (K(in)) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal K(in) channels are proposed to be histidines exposed to ...
متن کاملS-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis.
Drought stress induces stomatal closure and inhibits stomatal opening simultaneously. However, the underlying molecular mechanism is still largely unknown. Here we show that S-type anion channels SLAC1 and SLAH3 mainly inhibit inward K+ (K+in) channel KAT1 by protein-protein interaction, and consequently prevent stomatal opening in Arabidopsis. Voltage-clamp results demonstrated that SLAC1 inhi...
متن کاملVoltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor.
The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 122 شماره
صفحات -
تاریخ انتشار 2003